Geochemical Evolution of Hydraulically-Fractured Shales

NETL Research and Innovation Center Onshore Unconventional Resources Portfolio FY16 Task 5: Water and Geochemistry

Alexandra Hakala

National Energy Technology Laboratory

U.S. Department of Energy National Energy Technology Laboratory Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting August 16-18, 2016

Presentation Outline

- FY16 Onshore Unconventional Resources Overview
- Task 5 Overview Program Benefits, Project Objectives and Goals
- Technical Detail: Subsurface Geochemical Reactions

FY16 R&IC Onshore Unconventional Resources Portfolio

- Task 1: Project management
- Task 2: Induced Seismicity and Geomechanics (Lead: Dustin Crandall)
- Task 3: Field Geophysics (Lead: Rick Hammack)
- Task 4: Air Quality (Lead: Natalie Pekney)
- Task 5: Water and Geochemistry (Lead: Alexandra Hakala)

Benefit to the Program

- Facilitating a safe and environmentally sustainable supply of natural gas
 - Efficient resource development and associated footprint reduction
 - Subsurface science in the context of understanding the reservoir
 - Water quality and availability
- Research projects within *Task 5: Water and Geochemistry* will result in the following benefits:
 - Improved understanding of hydraulically-fractured reservoirs:
 - Characterize fluid-shale reactions that affect the reservoir and produced water composition
 - Identify microbiological populations present in hydraulically-fractured shales that can affect
 reservoir processes and well integrity
 - Ensuring protection of surface waters and shallow groundwaters (Water Quality):
 - Evaluate changes to well cement integrity in the presence of reactive geologic fluids and methods for monitoring well integrity
 - Identify best practices for waste disposal to minimize environmental impact

Project Overview: Goals and Objectives Task 5: Water and Geochemistry

- 1. Understand effects of biological and chemical processes on unconventional oil and gas reservoir performance.
- 2. Develop tools for detection of chemical changes in the hydrocarbon reservoir and shallow receptors of released fluids and gas.

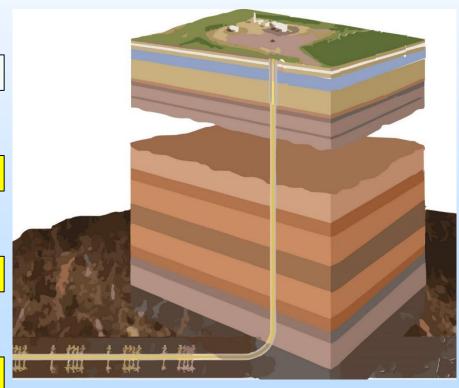
Surface System Responses

Identify best practices for waste disposal to minimize environmental impact

Gas Well Cement Integrity

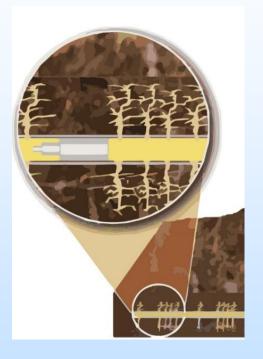
Evaluate changes to well cement integrity in the presence of reactive geologic fluids

Subsurface Geochemical Reactions


Characterize fluid-shale reactions that affect the reservoir and produced water composition

Microbial Communities and Biocides

Identify microbiological populations and biocide reactions in fractured shales

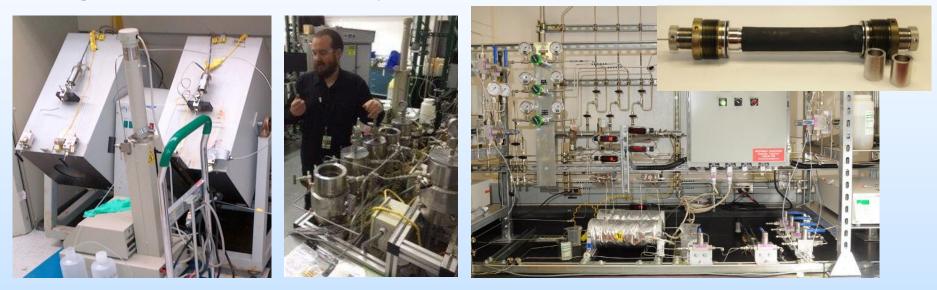

Sensors for In Situ Measurements

Develop sensors for monitoring well integrity

How do we characterize and monitor the mineral reactions that could affect flow in fractured shales?

- Evaluate the shut-in period
- Compare chemical changes in the presence and absence of fracturing chemicals
 - <u>Mineral Reactions</u> could these affect flow?
 - <u>Changes in Fluid Chemistry</u> what needs to be monitored for water treatment design, and to tell us what's happening downhole?</u>
- Apply NETL's experimental and analytical geochemistry capabilities to evaluate how fracturing chemicals react with shale

Mineral reactions and organic geochemical changes observed in lab-scale experiments



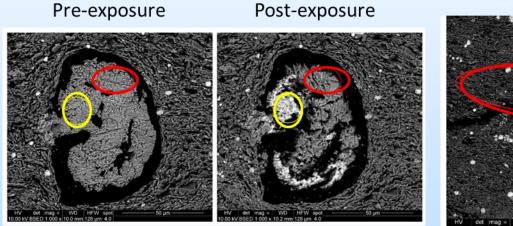
- Mineral reactions observed and modeled:
 - Calcite dissolution
 - Barite, gypsum, anhydrite, secondary smectite and carbonate precipitation
- Trace metal chemistry is controlled by secondary mineral precipitation
- Shale reactions with frac fluids result in changes to fluid and solid phase organic chemistry
- Geochemical tracers provide excellent signals for differences between formations
 - Ability to track fracture-scale reactions may be limited

Application of NETL R&IC's experimental and analytical geochemistry capabilities to evaluate frac chemical-shale reactions

High-pressure, high-temperature Static and Flow-through reactor systems (Geological and Environmental Systems Directorate, GES)

Analytical geochemistry & geochemical modeling (GES) and characterization (Materials Engineering and Manufacturing Directorate, MEMD)

- Metal isotopes: Multicollector ICP-MS
- Organic geochemistry: LC-QTOF-MS, IC, GC-MS
- Visualization: environmental SEM, CT scanning


Static autoclave experiments to evaluate changes in shale after exposure to high-TDS frac fluids – 1 of 2


Static autoclave, polished Marcellus Shale before and after exposure to synthetic high-TDS fluid. Reacted at 77°C and 4000 psi for 6 days.

Post-exposure gypsum precipitation, calcite dissolution

Post-exposure fracture growth

1000x magnification

500x magnification

Dieterich, Kutchko, and Goodman (2016) *Fuel*

Static autoclave experiments to evaluate changes in shale after exposure to high-TDS frac fluids – 2 of 2

Static autoclave, polished Marcellus Shale after exposure to synthetic high-TDS fluid. Reacted at 85°C and 4000 psi for 5 days.

 Calcium carbonate
 Barite

 W
 def mag
 W0
 HW spot
 20m

Barite and Sr-rich calcium carbonate observed on reacted shale surfaces

10

Paukert, Hakala, Scheuermann, Lopano, Guthrie, AAPG Denver CO, June 2, 2015

Mineral reactions and organic geochemical changes observed in lab-scale experiments

- Mineral reactions observed:
 - Calcite dissolution
 - Barite, gypsum, and carbonate precipitation

Experiment 1: High-TDS Fluid + Shale

Fluid: 100% Synthetic Brine

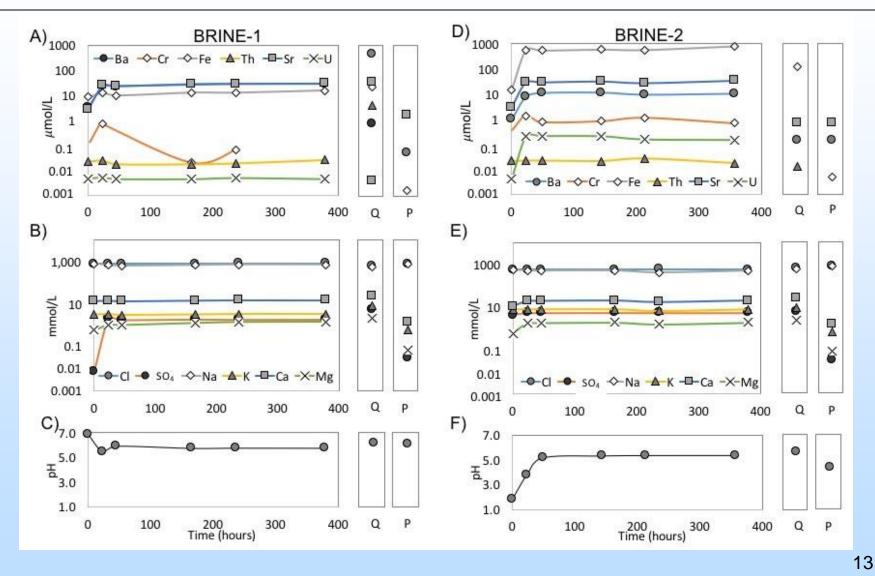
Solid: Marcellus shale chips and powder (Greene County)

Water to Rock Ratio: 20.4 to 1

pH₀: 7.59 ± 0.1

Experiment 2: High-TDS Fluid + Shale + Fracturing Chemicals

Fluid: 70% Synthetic Brine, 30% Fracturing Fluid Solid: Marcellus shale chips and powder (Greene County)


Water to Rock Ratio: 18.6 to 1

pH₀: 1.83 ± 0.1

12

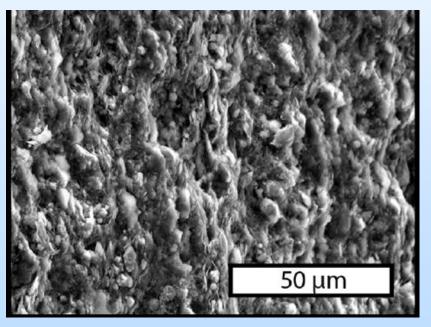
Most solution chemistry changes occur within 48 hours of bringing the experiment to elevated P,T

Marcon, Joseph, Carter, Hedges, Lopano, Guthrie, Hakala, Under Review, Applied Geochemistry

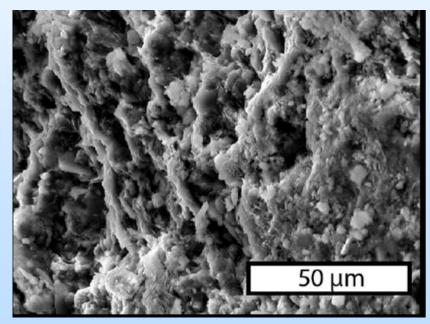
Most elements show elevated concentrations in the experiment with fracturing chemicals after 16 d

Elements Trace Elements in Solution After 16 days of Reaction enriched in 1,000.000 presence of BRINE-1 fracturing fluids: BRINE-2 100.000 Al*, As, B, Be, Concentration (µmol/kg) Cd, Co, Cr^{*}, Cu, 10.000 Fe*, Mn*, No, Ni, Pb, Sb, Sc, Sr, Ti, U*, V*, Y, Zn 1.000 K*, Ca*, Mg* 0.100 Elements enriched in 0.010 absence of fracturing 0.001 fluids: Ag Al As B Ba Be Cd Co Cr Cu Fe Mn Mo Ni Pb Sb Sc Sr Th Ti U V Y Zn Ag, Ba, Th

* Denotes statistically significant enrichment based on Pearson correlation coefficients

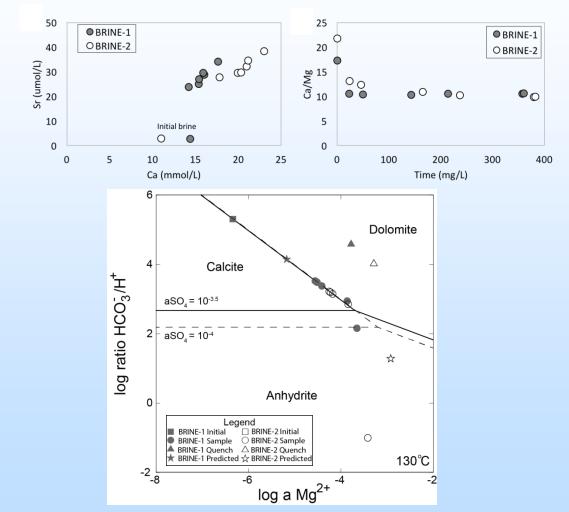

14

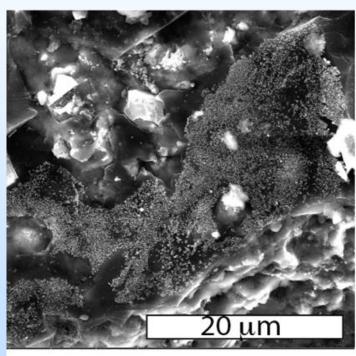
Evidence for significant carbonate dissolution in experiments containing fracturing fluids



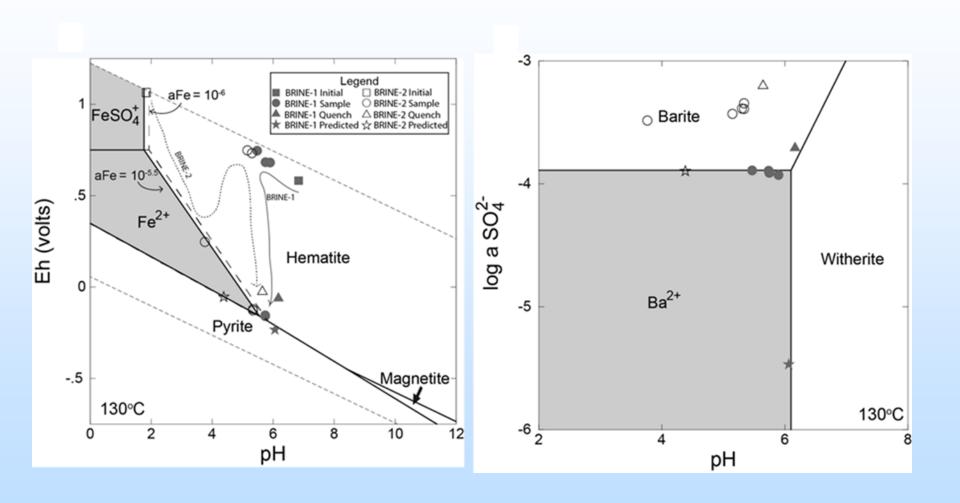
Inorganic Carl		
Unreacted	0.528 ± 0.002	Supported
Brine +Shale	0.457 ± 0.002	by XRD
Brine+Shale+Frac Fluid	0.208 ± 0.004	patterns

Brine + Shale




Brine + Shale + Frac Fluid

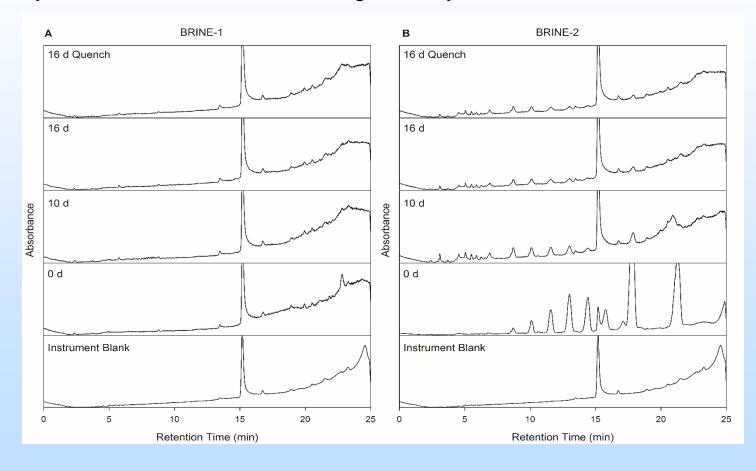
Evidence for secondary precipitation of carbonates and anhydrite



16

Marcon, Joseph, Carter, Hedges, Lopano, Guthrie, Hakala, Under Review, Applied Geochemistry

Redox changes, and may influence barite stability as observed by modeling fluid chemistry



17

Changes in aqueous organic composition observed for the experiment containing frac fluids: LC-QTOF

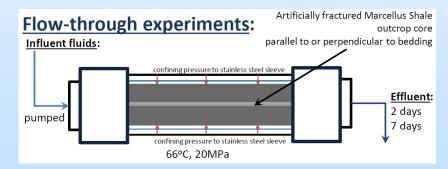
Rocking autoclave, Marcellus Shale chips + powder, 15 d, 130°C, 4000 psi BRINE-1: synthetic brine, BRINE-2: Fracturing fluid + synthetic brine

Changes in aqueous organic composition observed for the experiment containing frac fluids: GC-MS

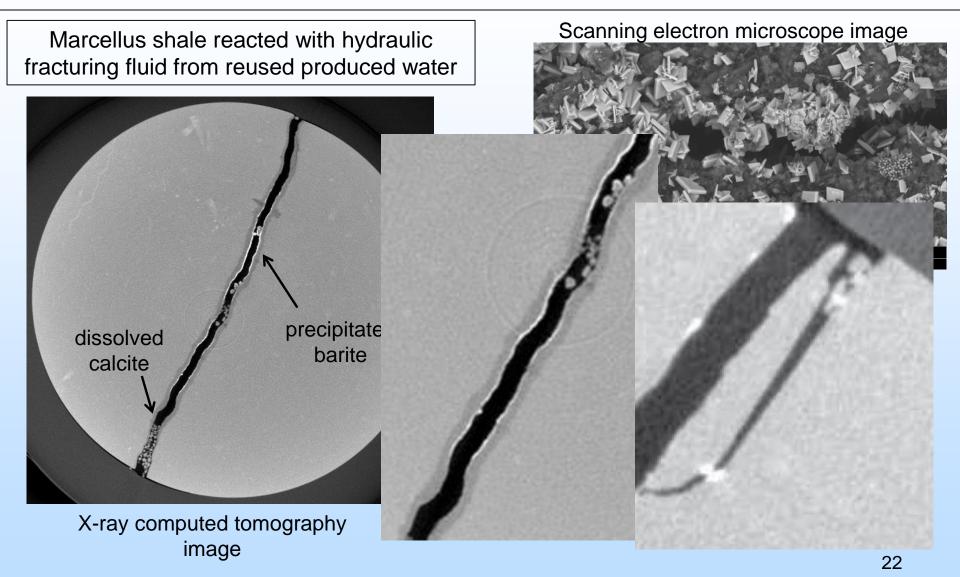
Rocking autoclave, Marcellus Shale chips + powder, Fracturing fluid + synthetic brine, 15 d, 130°C, 4000 psi

	Time (days)		lays)	
Reacted Samples	0	9.8	16.3	Observations
1-Octanol	X			
2-Butoxyethanol	Х	Х	Х	Slight decrease in the abundance from 0 to 16.3 days
4-Ethoxybenzoic Acid Ethyl Ester	Х	Х	Х	Decreased from 0 to 16.3 days sample
Acetic Acid		Х		
Benzene			Х	
Dimethylbenzene		Х	Х	Increased abundance from 9.8 to 16.3 days
Fural or 3-Furaldehyde		Х	Х	Only observed in later samples
N,N-dimethyl-1-dodecanamine	Х			
Napthalene	Х	Х	Х	Present in all samples
Nonanol		Х		
Tetrahydronaphthalene	X	Х	Х	Present in all samples
Toluene			Х	
Trimethylbenzene		Х	Х	Increase in Benzene from 9.8 to 16.3 days

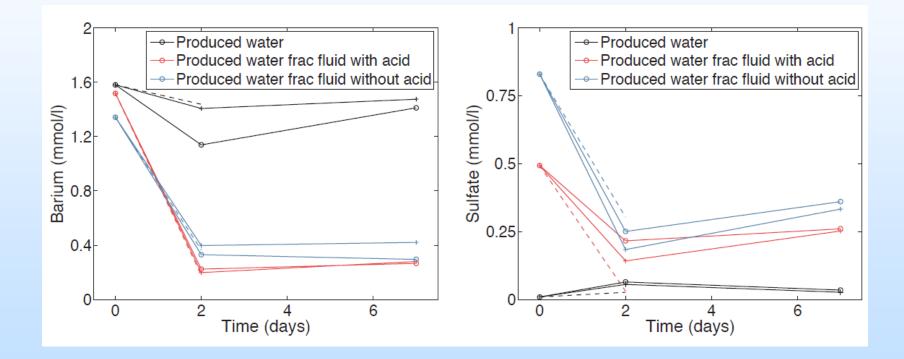
Mineral reactions and organic geochemical changes observed in lab-scale experiments


- Mineral reactions observed and modeled:
 - Calcite dissolution
 - Barite, gypsum, anhydrite, secondary smectite and carbonate precipitation
- Trace metal chemistry is controlled by secondary mineral precipitation
- Shale reactions with frac fluids result in changes to fluid and solid phase organic chemistry

Flow-through experiments to evaluate effects of flow on mineral dissolution and precipitation


- Are observations from static and rocking autoclave experiments consistent with a system under flow?
- Can geochemical tracers (metal isotopes) provide insight on mineral dissolution and precipitation?

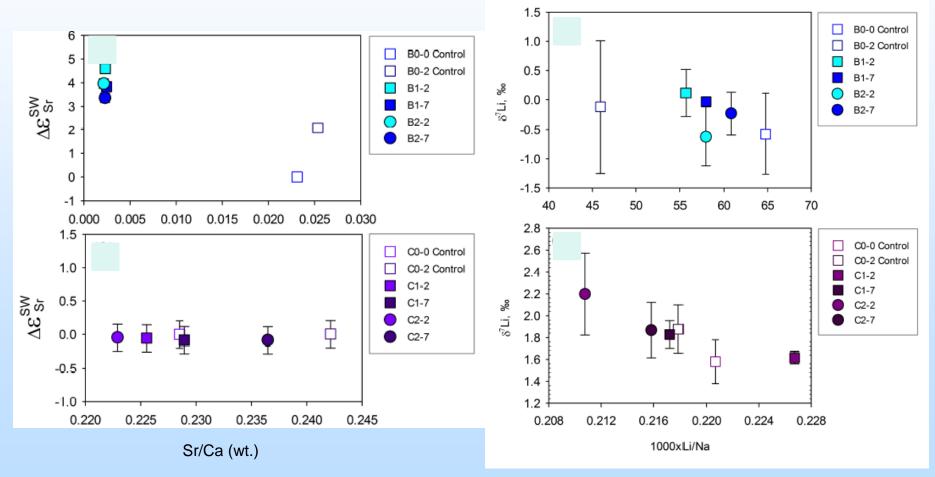
Barite formation observed in flow-through experiment containing reused produced water + frac chemicals


Paukert, Hakala, Jarvis, AGU Fall Meeting, December 2015; in preparation

Fluid chemistry for flow-through control experiment also shows Ba and SO₄²⁻ decrease

23

Implication: Scale inhibitor may not be performing as expected



Paukert, Hakala, Jarvis, AGU Fall Meeting, December 2015; in preparation

Minimal changes in Sr and Li isotope signatures observed for shale-frac fluid reactions

Implication: Although useful for monitoring basin-scale fluid mixing, Sr and Li isotopes show limited application as indicators for frac fluid shale interactions

24

Phan, Paukert, Hakala, AGU Fall Meeting, December 2015; in preparation

Mineral reactions and organic geochemical changes observed in lab-scale experiments

- Mineral reactions observed and modeled:
 - Calcite dissolution
 - Barite, gypsum, anhydrite, secondary smectite and carbonate precipitation
- Trace metal chemistry is controlled by secondary mineral precipitation
- Shale reactions with frac fluids result in changes to fluid and solid phase organic chemistry
- Geochemical tracers provide excellent signals for differences between formations
 - Ability to track fracture-scale reactions may be limited

Accomplishments to Date Onshore UCR Task 5: Water and Geochemistry

Time Period	Accomplishments
Historical - FY 15	 Batch experiments showed that fracturing fluids affect shale mineral reactions through pH and redox based reactions
	 Fiber optic-based pH sensing applications developed for aqueous subsurface environments
	 Air drilling identified as a plausible cause for groundwater methane transport as shown through 3D TOUGH 2 modeling
Current - FY 16	 Fracturing fluid-shale mineral reactions observed to result in mineral dissolution and precipitation along fractures, however have a limited influence on produced water total dissolved solids
	 Completion of largest microbial characterization survey of hydraulically-fractured environments to date
	 Gas well cement mineralogy and structures are affected by coal mine water
	 Leaching of metals and salts from drill cuttings disposal sites can vary by drilling method, elements of interest, and disposal site geochemical conditions
	 New approaches were developed for surface water monitoring of produced water spills, and shallow groundwater monitoring of methane migration
	 Dissolved iron and pyrite influence the degradation rate of biocides introduced to shale formations during hydraulic fracturing
Future - FY 17	 Focus on water systems, continue with leaching studies and modeling; monitoring and geochemical analysis approaches
	 Add produced water treatment and planning, geospatial approach to establishing base of groundwater

Synergy Opportunities

- Pore to Core Scale Processes in Shale
 - NETL, LANL, SSRL, LBNL, Sandia Collaborations Meeting on July 14, 2016
 - Leveraging research across multiple portfolios (unconventional oil and gas resources; geologic CO₂ storage)
 - Focus on shales
- Coordinate experimental efforts with SSRL with a focus on organic geochemical reactions and barite geochemistry
- Other opportunities to-be-identified

Summary

- Next steps for hydraulically-fractured reservoir shale geochemistry
 - Evaluate secondary mineral precipitation along a fracture flow pathway – can precipitation benefit fracture propping?
 - Cement reactions involving the near-wellbore environment?
 - More in-depth investigation related to organic geochemistry and microbiology of these systems

Appendix

Organization Chart

- Describe project team, organization, and participants.
 - Link organizations, if more than one, to general project efforts (i.e. materials development, pilot unit operation, management, cost analysis, etc.).
- Please limit company specific information to that relevant to achieving project goals and objectives.

Organization Chart: R&IC Onshore UCR

	FY 2016	FY 2017 and Future
Technical Portfolio Lead (TPL)	No TPL; Portfolio coordinated by TTCs	Alexandra Hakala
Team Technical Coordinators (TTC)	Task 1: Project Management – Alexandra Hakala Task 2: Induced Seismicity and Geomechanics – Dustin Crandall Task 3: Field Geophysics – Rick Hammack Task 4; Air Quality – Natalie Pekney Task 5: Water and Geochemistry – Alexandra Hakala	Task 1: Project Management – Alexandra Hakala Task 2: Reservoir Processes – Dustin Crandall Task 3: Wellbore Issues – Barbara Kutchko Task 4: Seismicity Issues – Rick Hammack Task 5: Water Issues – Alexandra Hakala Task 6: Air Quality Issues – Natalie Pekney Task 7: Hybrid Energy Systems – Mark McKoy Task 8: Systems Analysis for Onshore UCR – Donald Remson

Organization Chart: R&IC Onshore UCR Water and Geochemistry Projects, 1 of 2

FY 2016

Project	Principal Investigator	Team Members (NETL, ORISE, AECOM)	External Partners
Fluid and Solid Isotope Characterization at MSEEL	Alexandra Hakala	Thai Phan, Christina Lopano, Tracy Bank, Bill Garber	Shikha Sharma (WVU), Brian Stewart (Pitt)
Characterize chemistry of drill cuttings leachates	Christina Lopano	Mengling Stuckman, Alexandra Hakala	
Comparison of microbial ecology in fractured shales	Djuna Gulliver	Daniel Lipus	Kyle Bibbey (Pitt)
Biocide effectiveness through reactivity with shale minerals	Alexandra Hakala	Jinesh Jain	Athanasios Karamalidis, Nizette Edwards- Consolazio (CMU)
Sensor development for well corrosion monitoring	Paul Ohodnicki	Margaret Ziomonek- Moroz, Conjung Wang	
Cement integrity affected by acid mine water	Barbara Kutchko	James Gardiner, Alexandra Hakala	PA Department of Environmental Protection
Methane and radon migration in shallow aquifers	Daniel Soeder	AECOM	

Task 5: Water and Geochemistry, TTC: Alexandra Hakala

Organization Chart: R&IC Onshore UCR Water and Geochemistry Projects, 2 of 2

Proposed FY 2017 Projects

Task 2: Reservoir Processes, TTC: Dustin Crandall			lbore Issues, ara Kutchko	Task 5: Water Issues, TTC: Alexandra Hakala			
Project	Principal Investigator	Project	Principal Investigator	Project	Principal Investigator		
Organic, inorganic and isotopic analysis of fracture permeability	Alexandra Hakala	Evaluate cement samples from wellbore-acid mine water field scenarios	Barbara Kutchko	Development of new isotope systems for fluid analysis	Alexandra Hakala		
changes		Synchrotron	Christina Lopano	Electrochemistry -based	Alexandra Hakala		
Reactive fracture flow tests	Alexandra Hakala	analysis of cement samples		techniques for trace metal			
Characterization of key elements	Christina Lopano	Christina Lopano Corrosion and stress wellbore	Paul Ohodnicki	determination in brines			
for mineral dissolution and precipitation		sensor development		Geochemical studies with drill cuttings	Christina Lopano		
Ba precipitation control and Ba isotope development	Christina Lopano			Modeling fate of drill cuttings leachate	Daniel Soeder		
Evaluation of microbial populations	Djuna Gulliver			Geochemical testing and modeling of established isotope tracers in UOG basins	Alexandra Hakala		
				Water treatment for produced waters	Nicholas Siefert		
				Establish base to groundwater in U.S. shale basins	Kelly Rose		

Robert Dilmore

Produced water

supply chain modeling

Gantt Chart

	Project Dates for each Task/Subtask			FY16			
	Start	Finish		Q1	Q2	Q3	Q4
5. Water and Geochemistry	10/01/2015	09/30/2020					
5.1 Field Laboratories	10/01/2015	09/30/2020			1		
5.1.1 Fluid and solid isotope characterization at MSEEL	10/01/2015	09/30/2016	-	•		 	
5.1.2 Characterize chemistry of leachates from solid wastes when disposed under various conditions	10/01/2015	09/30/2016	-	•	 	 	
5.2 Fundamentals of Unconventional Oil and Gas Reservoirs	10/01/2015	09/30/2020					
5.2.1 Comparison of microbial ecology in Marcellus (dry gas) reservoir and the Bakken Petroleum System (oil, NGL, and gas)	10/01/2015	09/30/2016	-	•	1 1 1 1	1 1 1	
5.2.2 Biocide effectiveness through reactivity with shale minerals	10/01/2015	09/30/2016		•	 	1	
5.3 Wellbore Integrity	10/01/2015	09/30/2020					
5.3.2 Sensor development monitor potential casing corrosion downhole	10/01/2015	09/30/2016	-	•	1	 	
5.3.3 Evaluate effect of acidic, metal-laden mine waters on well casing and cement	10/01/2015	09/30/2016	-	•	1	 	
5.4 Protecting Water Resources		09/30/2020			1		
5.4.1 Methane and radon migration in shallow aquifers as a site is developed	10/01/2015	09/30/2016		•	1	1	

Bibliography – FY 2016

- Journal Publications:
 - Dieterich, M.; Kutchko, B.; Goodman, A., 2016, Characterization of Marcellus Shale and Huntersville Chert before and after exposure to hydraulic fracturing fluid via feature relocation using field-emission scanning electron microscopy. Fuel, v. 182, p. 227-235.
- Additional Tech Transfer (details available upon request):
 - Conference Papers: 1
 - Inventions, Patent Applications, Licenses: 1
 - Presentations: 14
 - Publications (including *in preparation*): 18